Counting and the 4 operations:

A step-by-step guide for families about Maths teaching at Barnham Primary School

Counting, place value and mental methods of calculation

End of year expectations	
By the end of Year R: I can verbally count to 20 and beyond.	
I can automatically recall number bonds to 5.	
I can subitise.	
I can count using reliably using 1:1 correspondence.	
By the end of Year 1: I can count to and across 100, forwards and backwards, from any given number.	
I can count, read and write numbers to 100 in numerals.	
I can, when given a number, identify one more or one less.	

By the end of Year 2:
I can use mental recall of addition and subtraction facts to 10.

What does this look like?

Children can remember and recall in sequence the numbers from 0 to 20 in the correct order when asked to count. When this is secure, they will then count beyond 20, recognising the patterns of crossing a tens number, for example 19-20-21..29-30-31, knowing instinctively which 'tens' number (ie 30,40) comes next in the sequence. When asked, children can recognise and recall pairs of numbers that make 5 , for example ' 2 and 3 makes 5^{\prime} or ' 4 and 1 is 5 altogether.'
Children can recognise small amounts of objects without needing to count the total.
Children can count accurately, saying the number names in order and counting each object, groups of objects to 20.
Children can remember and recall in sequence the numbers from 0 to 100 in the correct order when asked to count. When this is secure, they will then count forwards or backwards from any given number, recognising the patterns $98,99,100,101,102$ etc.

Children will learn about the place value of numbers and their place in the number system. They will use these in order to ensure numbers are correctly written. For example, forty-six is four tens and six ones, so is written 46 instead of 64 .
Children will start to learn about the place of numbers in a number line, so that they can quickly recall one more or less than any given number. Beginning with numbers to 20 then extending to 100 , using number lines and number squares (or 100 squares) for support.
Children will know, and quickly recall, number bonds to 10 .
ie: $1+9=10,2+8=10,3+7=10$ etc
Children will use knowledge that subtraction is the inverse of addition to recall subtraction facts to 10.
ie: $1+9=10$ so $10-1=9$ or $10-9=1$
Children will understand the value of each number in a 2 -digit number. For example, they will know that 37 is 3 tens and 7 ones, not a 3 and a 7 .

Children will use their knowledge of place value, as above, to read numbers and show their relative position on a number line. Children will also be able to estimate using their knowledge of number. Children will be able to represent numbers using different equipment, for examples tens and ones counters.
Children can say which number is larger or which number is smaller. They can read the < and > symbols as < less than, > greater than and use these alongside the = equals symbol to compare and order numbers. For example:
$7<9,21>12$ or $3+3=6$
Children will be able to read 2-digit numbers to 100 .
Children will be able to read numbers as words to 100, for example 21 as twenty one, 78 as seventy-eight.
Children will use knowledge of the number line methods to count on/back in units, then 10s.
Children will use knowledge of partitioning.
(See written methods of addition and subtraction)
Children will understand that:

$$
14+6=20
$$

So I know that $140+60=200$
$15-8=7$
So I know that $\quad 150-80=70$
Children will use the knowledge that multiplication is the inverse of division:
$5 \times 4=20$
So I know that $\quad 20 \div 4=5$ or $20 \div 5=4$
Children can say which number is larger or which number is smaller. They can read the < and > symbols as < less than, > greater than and use these alongside the = equals symbol to compare and order numbers. For example: 167 < 595, $219>123$ or $300+$ $300=600$

I can read and write numbers to at least 1000 in numerals and words	Children will be able to read and write 3-digit numbers to 1000. Children will be able to read numbers as words to 1000, for example 121 as one hundred and twenty one, 78 as seventy-eight.
By the end of Year 4: I can recall multiplication facts up to 12×12 and quickly derive the corresponding division facts.	Children will learn multiplication tables by rote, not by counting on. ie: $1 \times 2=2,2 \times 2=4,3 \times 6=6,4 \times 2=8$ etc not: $2,4,6,8$ etc Learning by rote will significantly aid pupils' work in both multiplication and division. Children can derive division facts using knowledge that division is the inverse of multiplication for all times tables.
I can use a range of mental methods of computation for addition, subtraction, multiplication and division.	Addition/Subtraction: Children will use knowledge of the number line methods to count on/back. Children will use knowledge of partitioning and decimals. Children can use compensation to streamline calculations. E.g. 52+39; think of it as $52+40=92$ then remove the 1 added at the beginning. Multiplication/Division: Children will learn multiplication tables by rote, not by counting on. Children will derive division facts using knowledge that division is the inverse of multiplication. Children will use knowledge of partitioning (and decimals) to multiply 2-digit numbers by 1-digit numbers. Children will use knowledge of the short division method to divide 2-digit numbers by 1digit numbers.
I can compare and order numbers beyond 1000.	Children can say which number is larger or which number is smaller. They can read the < and > symbols as < less than, > greater than and use these alongside the = equals symbol to compare and order numbers. For example: 1167 < 595, $2019>123$ or 3500 $+3500=7000$ Children can compare numbers with the same number of decimal places, up to 2 decimal places (from fractions).
I can read and write Roman numerals.	Children can read Roman numeral to 100 (I to C). Children can understand that the Roman numeral system changed over time to include the concept of 0 .
I can round numbers.	I can round any number to the nearest 10,100 or 1000. I can round decimals with 1 decimal place to the nearest whole number (from fractions).
By the end of Year 5: I can round numbers.	I can round numbers to the nearest 10,000 and 100,000 I can round decimals to the nearest whole number and 1 decimal place
I can compare and order numbers to 1,000,000.	I can read, write, order and compare numbers to 1,000,000 I can determine the value of each digit in a 7 -digit number I can recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents I can read Roman numerals to 1000 .
By the end of Year 6: I can compare and order numbers beyond 1,000,000.	I can read, write, order and compare numbers up to $10,000,000$ I can determine the value of each digit in an 8 -digit number I can identify the value of each digit to three decimal places. I can compare and order fractions, percentages and decimals - understanding how to convert between the three when required.

Addition

End of year expectations	What does this look like?
By the end of Year R: I can explore and represent patterns within numbers to 10, including odds evens, doubling facts and quantities.	Children will be able to combine 2 groups of objects to solve a simple adding problem, for example when given 2 bears and 3 bears they will combine groups and count 5 in total. Children will begin to understanding odds and evens as numbers that can or cannot be shared equally between 2.
By the end of Year 1: I can add one-digit and two-digit numbers to 20, including zero	In practical activities, children can combine 2 or more groups of objects before providing a total. Children can understand the + and $=$ signs and what they need to do when they see them.
Children begin to use a number line to 20 to add 1 more, 2 more etc by jumping on	
from a given number. Children can record these as number sentences.	

By the end of Year 4: I can use an efficient written method of addition.	Column Addition:$\begin{aligned} & 1592+1263=2855 \\ & 1592 \\ & +\frac{1263}{2855} \\ & \hline \end{aligned}$	
By the end of Year 5: I can use known facts, place value, knowledge of operations and brackets to calculate including all four operations with decimals to two places.	$\begin{array}{\|l} \hline \text { Column Addition: } \\ \hline 846.73+478.98=1325.71 \\ 846.73 \\ +478.98 \\ +425.71 \\ \hline 1111 \\ \hline \end{array}$	
I can solve simple problems involving adding negative numbers in context.	Number Line Methods: Pupils use a number line to add numbers in a negative context. $-5+4=-1$	The understanding that: $\begin{array}{ll} +\mathrm{ve}++\mathrm{ve}=+ & -\mathrm{ve}++\mathrm{ve}=+ \\ +\mathrm{ve}+-\mathrm{ve}=- & -\mathrm{ve}+-\mathrm{ve}=- \\ \therefore-5+-4=-9 & \end{array}$ May be independently held or developed by pupils and they may wish to use this knowledge when carrying out calculations of this nature.
By the end of Year 6: I can add fractions by writing them with a common denominator.	$\frac{1}{2}+\frac{3}{4}=\frac{5}{4}=1 \frac{1}{4}$ $\frac{1}{2}(x 2)+\frac{3}{1}=\frac{2}{1}+\frac{3}{1}=\frac{5}{1}=1 \frac{1}{1}$ $\begin{array}{llllll}1(x 2) & 4 & 4 & 4 & 4 & 4\end{array}$ When answering, fractions shou	ys be simplified or given as a mixed number.

Subtraction

End of year expectations	What does this look like?
By the end of Year R: I can explore and represent patterns within numbers to 10 .	Children will be able to remove a given amount of objects from a larger group, for example when they will physically take away 5 bears from a larger group of 10 bears.
By the end of Year 1: I can subtract one-digit and two-digit numbers from 20, including zero	In practical activities, children can count and remove one groups of objects from another before counting the new total. Children can understand the - and = signs and what they need to do when they see them. Children begin to use a number line to 20 to find 1 less, 2 less etc. Children can record these as number sentences. $5-2=3$
I can solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$.	Children can use objects and diagrams to solve simple problems, ie 'I have 8 apples and I eat 4 of them. How many do I have left?' Children can draw a simple representation of dots showing each object then cross some out to calculate a new total. $8-4=3$
I can read, write and interpret mathematical statements involving - and = symbols	Children can read the symbol + as 'add, plus or altogether,' knowing what it means in practical terms. Children can read the symbol = and understand that is means both sides of a number sentences must be balanced, seen in different contexts. For example: $\begin{array}{\|l} 5-2=3 \\ 8=10-2 \\ 4-2=5-3 \\ \hline \end{array}$
I can represent and use number bonds within 20	Children can investigate number bonds to 10 , looking for patterns. Children then learn number bonds to 20 and how knowing bonds to 10 can support this, ie Children will understand that: $\text { If } 5+5=10$ $\text { Then I know that } \quad 10-5=5$
By the end of Year 2: I can subtract numbers using objects, pictorial representation and mentally, including: 2 digits minus ones 2-digits minus 10s	Children can use the methods below to solve the following subtraction problems: 1 digit-1 digit 2 digit-1 digit 2 digit - 2 digit Children can subtract two numbers by physically taking away objects, for example $4-3=1$

Children can subtract using a simple diagram, for example:

Children can subtract using a printed number line:

Children can subtract using an empty number line:

Children can subtract using a hundred square, for example

$$
99-88=11
$$

By the end of Year 3: I can subtract 3-digit numbers using a written method.	Expanded Column Subtraction (no exchanging):$645-232=413$600 40 5 -200 30 2 400 10 3	Expanded Column Subtraction (with exchanging): $\begin{array}{\|rcr} 721-556=165 \\ 600 & 110 & \\ 700 & 20 & 11 \\ -500 & 50 & 6 \\ \hline 100 & 60 & 5 \\ \hline \end{array}$
	Column Subtraction: $\begin{aligned} & 645-231=413 \\ & 645 \\ & -232 \\ & -413 \end{aligned}$	Column Subtraction (with multiple exchanges): $\left\lvert\, \begin{aligned} & 721-556=165 \\ & 6^{1} 1 \\ & 7 z^{11} \\ & -\begin{array}{r} 5 \\ \hline 165 \\ \hline 165 \end{array} \end{aligned}\right.$
By the end of Year 4: I can use an efficient written method of subtraction.	Column Subtraction:	Column Subtraction (with multiple exchanges): $\begin{gathered} 721-556=165 \\ 6^{11} \\ 17 z^{11} \\ -1556 \\ \hline 0165 \\ \hline \end{gathered}$

By the end of Year 5: I can use known facts, place value, knowledge of operations and brackets to calculate including all four operations with decimals to two places.	$\begin{aligned} & \frac{\text { Column Subtraction: }}{8.82-7.78=1.04} \begin{array}{l} 7 \\ 8.8^{12} \\ -\frac{7.78}{1.04} \end{array} \end{aligned}$	
I can solve problems involving subtracting negative numbers in context.	Number Line Methods: Pupils use a number line to subtract numbers in a negative context. $-5-4=-9$ Find the difference between 7 and -15. $7-(-15)=22$	The understanding that: $\begin{array}{ll} +\mathrm{ve}-+\mathrm{ve}=- & \text {-ve }-+\mathrm{ve}=+ \\ +\mathrm{ve}-\mathrm{ve}=+ & \text {-ve }-\mathrm{ve}=+ \\ \therefore-5--4=-1 \end{array}$ May be independently held or developed by pupils and they may wish to use this knowledge when carrying out calculations of this nature.
By the end of Year 6: I can subtract fractions by writing them with a common denominator.	$\begin{aligned} & \begin{array}{l} \frac{3}{5}-\frac{1}{3}=\frac{4}{15} \\ \frac{3}{5}(x 3)-\frac{1}{3}(x 5)=\frac{9}{3}-\frac{5}{15}=\frac{4}{15} \end{array} \end{aligned}$ When answering, fractions should always be simplified or given as a mixed number.	

Multiplication

End of year expectations	What does this look like?					
By the end of Year R: I can explore and represent patterns within numbers to 10 , including odds \& evens, doubling facts and quantities.	Children will know that doubling means to add the same amount again, ie double 3 is 3 add 3. Children will understand the x symbol as 'lots of' or 'groups of,' for example 3×2 is ' 3 lots of 2^{\prime} and will show this using 3 groups of 2 objects to find a total.					
By the end of Year 1: I can solve one-step problems involving multiplication by calculating the answer using objects, pictorial representation and arrays.	Children will revise vocabulary for multiplication, as above, understanding the x and $=$ signs. Children will be able to read and attempt to solve problems involving the x and $=$ symbols. Children will be able to solve $2 x$ and $5 x$ table problems using objects or diagrams, ie $\begin{gathered} 2 \times 5=10 \\ 0 \bullet \bullet \bullet \bullet \bullet \bullet \end{gathered}$ An array is when we present this formally and in rows, as below, to make it easier to see that 2×5 and 5×2 calculate to the same answer:					
I can count in multiples of 2, 5 and 10 .	Children can count in steps of 2,5 and 10 as outlined below. This will enable them to link counting in with repeated addition and multiplication so they can identify and begin to see links between the concepts below. For example:					
	Counting in steps	5	10	15	20	25
	Repeated addition	5	$5+5$	$5+5+5$	$5+5+5+5$	5+5+5+5+5
	Times table	1×5	2×5	3×5	4×5	5×5
By the end of Year 2: I can solve multiplication problems using materials, arrays, repeated addition, mental methods, including problems in contexts.	Children will be able to use objects (numicon, blocks, counters etc) to solve simple multiplication problems. For example: $3 \times 4=12$ Children will be able to use simple diagrams to show and solve multiplication problems. For example, 3×4 =:					

	Children will understand multiplication as repeated addition (the same number added over again). For example, 3×4 is $4+4+4=$: Children will begin to use arrays to understand the commutative nature of multiplication (for example 3×5 or 5×3 give the same answers) Children will use knowledge of multiplication vocabulary to express this in number sentences. ie: $3 \times 2=6$ and $2 \times 3=6$ Children will understand that doubling is multiplying by 2.
I can recall and use multiplication facts (and associated division facts) for the $2 x, 5 x$ and $10 x$ tables	Children will be able to recite the $2 x, 5 x$ and $10 x$ tables in order, knowing the pattern of numbers as set out below: $\begin{array}{llllllllllllll} 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & & \\ 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 & \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 \end{array}$ When asked, children will be able to swiftly answer times tables questions for $2 x, 5 x$ and $10 x$ table, for example 'what is 5×5 ?' and 'what is $25 \div 5$?'
By the end of Year 3: I can multiply two digit numbers by 2, 3, 4 or 5 as well as 10 .	
I can recall and use multiplication facts (and associated division facts) for the $3 x, 4 x$ and $8 x$ tables	Children will be able to recite the $3 x, 4 x$ and $8 x$ tables in order, knowing the pattern of numbers as set out below: $\begin{array}{llllllllllll} 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & 33 & 36 \\ 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 \\ 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 & 88 & 96 \end{array}$ When asked, children will be able to swiftly answer times tables questions for $3 x, 4 x$ and $8 \times$ table, for example 'what is 5×8 ?' and 'what is $40 \div 5$?'
By the end of Year 4: I can use an efficient written method of short multiplication.	Column Method for Short-Multiplication: $\begin{aligned} & 39 \times 3=117 \\ & \\ & 39 \\ & \times \quad 3 \\ & \hline 117 \end{aligned}$
I can recall and use multiplication facts (and associated division facts) for all tables up to 12×12	Children will be able to recite the 1 x to 12 x tables in order. When asked, children will be able to swiftly answer times tables questions for the 1 x to 12 x tables, for example 'what is 5×8 ?' and 'what is $40 \div 5$?'

Division

End of year expectations	What does this look like?
By the end of Year R: I can explore and represent patterns within numbers to 10 , including odds \& evens, doubling facts and quantities.	Children will know that halving means to split a shape or amount into 2 equal parts. Children will understand the \div symbol as 'sharing' or 'dividing' for example $10 \div 2$ is ' 10 shared between 2 ' and will show this using 10 objects shared between 2 people:
By the end of Year 1: I can solve one-step problems involving division by calculating the answer using objects, pictorial representation and arrays..	Children will be able to solve \div problems by dividing objects equally into hoops etc. Children will revise and understand vocabulary of division, such as divide, share, halve. Children will revise and understand \div and $=$ signs. Children will use the use the \div and $=$ signs to create and solve number sentences. Children will begin to understand the link between multiplication and division.
I can count in multiples of 2,5 and 10 .	See 'multiplication' above.
By the end of Year 2: I can solve division problems using materials, arrays, repeated addition, mental methods, including problems in contexts.	Children can understand division as a physical sharing of objects, first between 2 then between 5 and 10 . For example, $6 \div 2=3$

Children can read and attempt to solve division problems using simple diagrams or drawings. For example, $6 \div 2=3$

Children can understand division as repeated subtraction, using diagrams or visual representations for support.

By the end of Year 3:

I can divide two digit numbers by 2, 3, 4 or 5 as well as 10 .

By the end of Year 4:
I can use an efficient written method of short division.

Short Division:
$649 \div 3=216 \mathrm{r} 1$
216 r 1
$3 \longdiv { 6 4 { } ^ { 1 9 } }$

Short Division:

$842 \div 6=140 \mathrm{r} 2$
${ }_{6} \frac{140 r 2}{8^{2} 42}$

By the end of Year 5: I can use known facts, place value, knowledge of operations and brackets to calculate including all four operations with decimals to two places.	$\begin{aligned} & \frac{\text { Short Division: }}{827.24 \div 4=206.81} \\ & 4 \frac{206 \cdot 81}{8227.324} \end{aligned}$		
I understand and can use an appropriate noncalculator method for solving problems that involve dividing any three digit number by any two digit number.	Long Division (using cheat sheet): $504 \div 21=24$ 21		
By the end of Year 6: I can divide by a fraction.	Use practical activities to investigate in order to understand the method. Use formal notation to write up practical activities.	KEEP \| CHANGE	FLIP Dividing Fractions When answering, fractions should always be simplified or given as a mixed number. $\frac{21}{8}=21 \div 8=2 \mathrm{r} 5=2 \frac{5}{8}$
I can calculate fractions of quantities.	Use knowledge that to find a fraction of $\begin{aligned} & \frac{1}{3} \text { of } 516=172 \\ & 516 \div 3=172 \\ & 3 \left\lvert\, \frac{172}{5^{2} 16}\right. \end{aligned}$	antity, you divide by the denominator.	

Glossary of key mathematical terms \& symbols

$<$	Less than symbol: used to compare numbers, for example $8<12$
>	More than symbol: used to compare numbers, for example $12>8$
$=$	Equals symbol: to show equality, one side of an equation should equal another, for example $6=3+3$.
+	Plus, add, altogether
-	Minus, take-away, subtract
X	Multiply, times, lots of, groups of
\div	Divide, share
1:1 Correspondence	An early concept in counting: a child will count each object and say number names in the correct order.
Arrays	An arrangement of objects, pictures or numbers in rows and columns, used when representing multiplication and division problems.
Bar model	A pictorial representation of a problem or concept where bars or boxes are used to represent the known and unknown quantities.
Correspondence problems	Using knowledge of times and divide problems to systematically list possible combinations from 2 groups of objects, example: I can pick 1 food and 1 drink from the menu. What are the possible combinations I could have?
Composite number	A positive integer which is not a prime number.
Commutative law	A law for addition or multiplication meaning that the order of the numbers doesn't affect the final total. Expresed symbolically: $a+b$ is the same as $b+a$.
Cube number	A number multiplied by itself 3 times, for example 4 cubed is $4 \times 4 \times 4$. Represented by the symbol ${ }^{3}$, for example 4 cubed is 4^{3}
Decimal place	The position of a digit to the right of a decimal point; for example, a third rounded to 2 decimal places would be 0.33 , two places after a decimal point.
Decimal point	A small dot or point used to separate the whole number part from a fractional number part of a number.
Denominator	The bottom number in a fraction. Shows how many equal parts the item is divided into.
Distributive law	Simply: $a(b+c)$ is the same as $a b+a c$. The Distributive Law says that multiplying a number by a group of numbers added together is the same as doing each multiplication separately.
Expanded column	The expanded column method is for solving addition or multiplication problems by writing a number so that it shows the place value of each digit. For example, the expanded form of 586 is $500+80+6$. In the expanded column addition method you expand the numbers and then use the column method to add the expanded numbers.
Factor	A number that divides another number or expression evenly, for example the factors of 12 are $1,2,3,4,6$ and 12.
Factor pairs	Factors are often given as pairs of numbers, which multiply together to give the original number, for example factor pairs of 12 are 2 and 6,1 and 12,3 and 4.
Integer	A whole positive or negative number, or 0 .
Inverse operation	An operation that reverse the effect of another operation, for example addition \& subtraction are inverse operations.
Long division	A method used for dividing large numbers into groups or parts - a large number (dividend), is divided by another number (divisor), to give a result (quotient)

	and sometimes a remainder.
Long multiplication	A method for multiplying larger numbers.
Multiple	The result of one number multiplied by another, eg multiples of 5 are 5, $10,15,20,25$ etc.
Multirepresentation	Showing a number or problem using various equipment or pictorial representations.
Negative number	A number less than zero, indicated by the symbol For example 2 less than 1 is -1 .
Numerator	The top number in a fraction
Number sentence	An equation or sum to be solved, finished or balanced. For example $9+3$ $=12$
Non-unit fraction	A fraction where the numerator is greater than 1 , for example $3 / 5,2 / 3$ or $3 / 4$.
Number bond	A pair of numbers that combine to make another number, for example number bonds of 10 are $0 \& 10,1 \& 9,2 \& 8$ etc.
Part-whole model	A pictorial representation of 'splitting' a number into component parts, for example 45 can be shown as 4 tens and 5 ones.
Pictorial representation	Drawn or printed representations of objects or numbers involved in maths problems.
Place value	The value of each digit in a number, for example the digit 5 in 514 is worth 500 . It is understanding the difference between digits and their values depending on where it is in a number.
Positive integer scaling problems	A problem to be solved using the information already provided. In this case, using positive integers. For example, Mr Smith buys a sausage roll for $£ 1$. How much would 4 sausage rolls cost?
Positive number	A number larger than 0 .
Prime number	A number that only has 2 factors, for example 2, 3, 5 and 7 are prime numbers.
Prime factor	Factors of a number that are, themselves, prime numbers.
Remainder	An amount left over after performing a mathematical operation, usually in division. For example, 12 divided by 5 would be 2 remainder 2,12 is shared equally into 2 with 2 left over.
Repeated addition	Adding equal groups together as a precursor to understanding multiplication, for example $5 \times 4=$ can be understood as $5+5+5+5=$
Repeated subtraction	Subtracting an equal number of items from a larger group as a precursor to understanding division, for example $15 \div 5=$ can be shown as $15-5=10$, 10 -$5=5,5-5=0$
Roman numeral	Any of the letters representing numbers in the Roman numerical system: I = 1, V $=5, X=10, L=50, C=100, D=500, M=1,000$. In this system a letter placed after another of greater value adds (XVI or xvi is 16), whereas a letter placed before another of greater value subtracts (XC is 90).
Short division	A quick method of dividing numbers, sometimes known as the 'bus stop' method.
Short multiplication	A quick method for multiplication of numbers by a single-digit number.
Square number	A number multiplied by itself, for example 4 squared is 4×4. Represented by the symbol ${ }^{2}$, for example 4 squared is 4^{2}

Unit fraction	Any fraction with 1 as the numerator and a whole number as a denominator.
Verbal problem	See 'word problem.'
Whole number	Positive numbers from 0 onwards with no fraction or decimal point.
Word problem	A mathematical problem presented in an example situation which requires finding a solution.
Written problem	See 'word problem.'

